kanidmd_lib/be/idl_arc_sqlite.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
use std::collections::BTreeMap;
use std::collections::BTreeSet;
use std::convert::TryInto;
use std::ops::DerefMut;
use std::sync::Arc;
use std::time::Duration;
use concread::arcache::{ARCache, ARCacheBuilder, ARCacheReadTxn, ARCacheWriteTxn};
use concread::cowcell::*;
use hashbrown::HashMap;
use idlset::v2::IDLBitRange;
use idlset::AndNot;
use kanidm_proto::internal::{ConsistencyError, OperationError};
use tracing::trace;
use uuid::Uuid;
use crate::be::idl_sqlite::{
IdlSqlite, IdlSqliteReadTransaction, IdlSqliteTransaction, IdlSqliteWriteTransaction,
};
use crate::be::idxkey::{
IdlCacheKey, IdlCacheKeyRef, IdlCacheKeyToRef, IdxKey, IdxKeyRef, IdxKeyToRef, IdxSlope,
};
use crate::be::keystorage::{KeyHandle, KeyHandleId};
use crate::be::{BackendConfig, IdList, IdRawEntry};
use crate::entry::{Entry, EntryCommitted, EntrySealed};
use crate::prelude::*;
use crate::value::{IndexType, Value};
// use std::borrow::Borrow;
// Appears to take about ~500MB on some stress tests
const DEFAULT_CACHE_TARGET: usize = 2048;
const DEFAULT_IDL_CACHE_RATIO: usize = 32;
const DEFAULT_NAME_CACHE_RATIO: usize = 8;
const DEFAULT_CACHE_RMISS: usize = 0;
const DEFAULT_CACHE_WMISS: usize = 0;
#[derive(Debug, Clone, Ord, PartialOrd, Eq, PartialEq, Hash)]
enum NameCacheKey {
Name2Uuid(String),
ExternalId2Uuid(String),
Uuid2Rdn(Uuid),
Uuid2Spn(Uuid),
}
#[derive(Debug, Clone)]
enum NameCacheValue {
U(Uuid),
R(String),
S(Box<Value>),
}
pub struct IdlArcSqlite {
db: IdlSqlite,
entry_cache: ARCache<u64, Arc<EntrySealedCommitted>>,
idl_cache: ARCache<IdlCacheKey, Box<IDLBitRange>>,
name_cache: ARCache<NameCacheKey, NameCacheValue>,
op_ts_max: CowCell<Option<Duration>>,
allids: CowCell<IDLBitRange>,
maxid: CowCell<u64>,
keyhandles: CowCell<HashMap<KeyHandleId, KeyHandle>>,
}
pub struct IdlArcSqliteReadTransaction<'a> {
db: IdlSqliteReadTransaction,
entry_cache: ARCacheReadTxn<'a, u64, Arc<EntrySealedCommitted>, ()>,
idl_cache: ARCacheReadTxn<'a, IdlCacheKey, Box<IDLBitRange>, ()>,
name_cache: ARCacheReadTxn<'a, NameCacheKey, NameCacheValue, ()>,
allids: CowCellReadTxn<IDLBitRange>,
}
pub struct IdlArcSqliteWriteTransaction<'a> {
pub(super) db: IdlSqliteWriteTransaction,
entry_cache: ARCacheWriteTxn<'a, u64, Arc<EntrySealedCommitted>, ()>,
idl_cache: ARCacheWriteTxn<'a, IdlCacheKey, Box<IDLBitRange>, ()>,
name_cache: ARCacheWriteTxn<'a, NameCacheKey, NameCacheValue, ()>,
op_ts_max: CowCellWriteTxn<'a, Option<Duration>>,
allids: CowCellWriteTxn<'a, IDLBitRange>,
maxid: CowCellWriteTxn<'a, u64>,
pub(super) keyhandles: CowCellWriteTxn<'a, HashMap<KeyHandleId, KeyHandle>>,
}
macro_rules! get_identry {
(
$self:expr,
$idl:expr,
$is_read_op:expr
) => {{
let mut result: Vec<Arc<EntrySealedCommitted>> = Vec::with_capacity(0);
match $idl {
IdList::Partial(idli) | IdList::PartialThreshold(idli) | IdList::Indexed(idli) => {
let mut nidl = IDLBitRange::new();
idli.into_iter().for_each(|i| {
// For all the id's in idl.
// is it in the cache?
match $self.entry_cache.get(&i) {
Some(eref) => result.push(eref.clone()),
None => unsafe { nidl.push_id(i) },
}
});
if !nidl.is_empty() {
// Now, get anything from nidl that is needed.
let mut db_result = $self.db.get_identry(&IdList::Partial(nidl))?;
// Clone everything from db_result into the cache.
if $is_read_op {
db_result.iter().for_each(|e| {
$self.entry_cache.insert(e.get_id(), e.clone());
});
}
// Merge the two vecs
result.append(&mut db_result);
}
}
IdList::AllIds => {
// VERY similar to above, but we skip adding the entries to the cache
// on miss to prevent scan/invalidation attacks.
let idli = (*$self.allids).clone();
let mut nidl = IDLBitRange::new();
(&idli)
.into_iter()
.for_each(|i| match $self.entry_cache.get(&i) {
Some(eref) => result.push(eref.clone()),
None => unsafe { nidl.push_id(i) },
});
if !nidl.is_empty() {
// Now, get anything from nidl that is needed.
let mut db_result = $self.db.get_identry(&IdList::Partial(nidl))?;
// Merge the two vecs
result.append(&mut db_result);
}
}
};
// Return
Ok(result)
}};
}
macro_rules! get_identry_raw {
(
$self:expr,
$idl:expr
) => {{
// As a cache we have no concept of this, so we just bypass to the db.
$self.db.get_identry_raw($idl)
}};
}
// macro_rules! exists_idx {
// (
// $self:expr,
// $attr:expr,
// $itype:expr
// ) => {{
// // As a cache we have no concept of this, so we just bypass to the db.
// $self.db.exists_idx($attr, $itype)
// }};
// }
macro_rules! get_idl {
(
$self:expr,
$attr:expr,
$itype:expr,
$idx_key:expr
) => {{
// SEE ALSO #259: Find a way to implement borrow for this properly.
// I don't think this is possible. When we make this dyn, the arc
// needs the dyn trait to be sized so that it *could* claim a clone
// for hit tracking reasons. That also means that we need From and
// some other traits that just seem incompatible. And in the end,
// we clone a few times in arc, and if we miss we need to insert anyway
//
// So the best path could be to replace IdlCacheKey with a compressed
// or smaller type. Perhaps even a small cache of the IdlCacheKeys that
// are allocated to reduce some allocs? Probably over thinking it at
// this point.
//
// First attempt to get from this cache.
let cache_key = IdlCacheKeyRef {
a: $attr,
i: $itype,
k: $idx_key,
};
let cache_r = $self.idl_cache.get(&cache_key as &dyn IdlCacheKeyToRef);
// If hit, continue.
if let Some(ref data) = cache_r {
trace!(
cached_index = ?$itype,
attr = ?$attr,
idl = %data,
);
return Ok(Some(data.as_ref().clone()));
}
// If miss, get from db *and* insert to the cache.
let db_r = $self.db.get_idl($attr, $itype, $idx_key)?;
if let Some(ref idl) = db_r {
let ncache_key = IdlCacheKey {
a: $attr.clone(),
i: $itype.clone(),
k: $idx_key.into(),
};
$self.idl_cache.insert(ncache_key, Box::new(idl.clone()))
}
Ok(db_r)
}};
}
macro_rules! name2uuid {
(
$self:expr,
$name:expr
) => {{
let cache_key = NameCacheKey::Name2Uuid($name.to_string());
let cache_r = $self.name_cache.get(&cache_key);
if let Some(NameCacheValue::U(uuid)) = cache_r {
trace!(?uuid, "Got cached name2uuid");
return Ok(Some(uuid.clone()));
} else {
trace!("Cache miss uuid for name2uuid");
}
let db_r = $self.db.name2uuid($name)?;
if let Some(uuid) = db_r {
$self
.name_cache
.insert(cache_key, NameCacheValue::U(uuid.clone()))
}
Ok(db_r)
}};
}
macro_rules! externalid2uuid {
(
$self:expr,
$name:expr
) => {{
let cache_key = NameCacheKey::ExternalId2Uuid($name.to_string());
let cache_r = $self.name_cache.get(&cache_key);
if let Some(NameCacheValue::U(uuid)) = cache_r {
trace!(?uuid, "Got cached externalid2uuid");
return Ok(Some(uuid.clone()));
} else {
trace!("Cache miss uuid for externalid2uuid");
}
let db_r = $self.db.externalid2uuid($name)?;
if let Some(uuid) = db_r {
$self
.name_cache
.insert(cache_key, NameCacheValue::U(uuid.clone()))
}
Ok(db_r)
}};
}
macro_rules! uuid2spn {
(
$self:expr,
$uuid:expr
) => {{
let cache_key = NameCacheKey::Uuid2Spn($uuid);
let cache_r = $self.name_cache.get(&cache_key);
if let Some(NameCacheValue::S(ref spn)) = cache_r {
trace!(?spn, "Got cached uuid2spn");
return Ok(Some(spn.as_ref().clone()));
} else {
trace!("Cache miss spn for uuid2spn");
}
let db_r = $self.db.uuid2spn($uuid)?;
if let Some(ref data) = db_r {
$self
.name_cache
.insert(cache_key, NameCacheValue::S(Box::new(data.clone())))
}
Ok(db_r)
}};
}
macro_rules! uuid2rdn {
(
$self:expr,
$uuid:expr
) => {{
let cache_key = NameCacheKey::Uuid2Rdn($uuid);
let cache_r = $self.name_cache.get(&cache_key);
if let Some(NameCacheValue::R(ref rdn)) = cache_r {
return Ok(Some(rdn.clone()));
} else {
trace!("Cache miss rdn for uuid2rdn");
}
let db_r = $self.db.uuid2rdn($uuid)?;
if let Some(ref data) = db_r {
$self
.name_cache
.insert(cache_key, NameCacheValue::R(data.clone()))
}
Ok(db_r)
}};
}
macro_rules! verify {
(
$self:expr
) => {{
let mut r = $self.db.verify();
if r.is_empty() && !$self.is_dirty() {
// Check allids.
match $self.db.get_allids() {
Ok(db_allids) => {
if !db_allids.is_compressed() || !(*($self).allids).is_compressed() {
admin_warn!("Inconsistent ALLIDS compression state");
r.push(Err(ConsistencyError::BackendAllIdsSync))
}
if db_allids != (*($self).allids) {
// might want to redo how large key-values are formatted considering what this could look like
admin_warn!(
db_allids = ?(&db_allids).andnot(&($self).allids),
arc_allids = ?(&(*($self).allids)).andnot(&db_allids),
"Inconsistent ALLIDS set"
);
r.push(Err(ConsistencyError::BackendAllIdsSync))
}
}
Err(_) => r.push(Err(ConsistencyError::Unknown)),
};
};
r
}};
}
pub trait IdlArcSqliteTransaction {
fn get_identry(
&mut self,
idl: &IdList,
) -> Result<Vec<Arc<EntrySealedCommitted>>, OperationError>;
fn get_identry_raw(&self, idl: &IdList) -> Result<Vec<IdRawEntry>, OperationError>;
// fn exists_idx(&mut self, attr: &str, itype: IndexType) -> Result<bool, OperationError>;
fn get_idl(
&mut self,
attr: &Attribute,
itype: IndexType,
idx_key: &str,
) -> Result<Option<IDLBitRange>, OperationError>;
fn get_db_s_uuid(&self) -> Result<Option<Uuid>, OperationError>;
fn get_db_d_uuid(&self) -> Result<Option<Uuid>, OperationError>;
fn get_db_ts_max(&self) -> Result<Option<Duration>, OperationError>;
fn get_key_handles(&mut self) -> Result<BTreeMap<KeyHandleId, KeyHandle>, OperationError>;
fn verify(&self) -> Vec<Result<(), ConsistencyError>>;
fn is_dirty(&self) -> bool;
fn name2uuid(&mut self, name: &str) -> Result<Option<Uuid>, OperationError>;
fn externalid2uuid(&mut self, name: &str) -> Result<Option<Uuid>, OperationError>;
fn uuid2spn(&mut self, uuid: Uuid) -> Result<Option<Value>, OperationError>;
fn uuid2rdn(&mut self, uuid: Uuid) -> Result<Option<String>, OperationError>;
fn list_idxs(&self) -> Result<Vec<String>, OperationError>;
fn list_id2entry(&self) -> Result<Vec<(u64, String)>, OperationError>;
fn list_quarantined(&self) -> Result<Vec<(u64, String)>, OperationError>;
fn list_index_content(
&self,
index_name: &str,
) -> Result<Vec<(String, IDLBitRange)>, OperationError>;
fn get_id2entry(&self, id: u64) -> Result<(u64, String), OperationError>;
}
impl IdlArcSqliteTransaction for IdlArcSqliteReadTransaction<'_> {
fn get_identry(
&mut self,
idl: &IdList,
) -> Result<Vec<Arc<EntrySealedCommitted>>, OperationError> {
get_identry!(self, idl, true)
}
fn get_identry_raw(&self, idl: &IdList) -> Result<Vec<IdRawEntry>, OperationError> {
get_identry_raw!(self, idl)
}
// fn exists_idx(&mut self, attr: &str, itype: IndexType) -> Result<bool, OperationError> {
// exists_idx!(self, attr, itype)
// }
#[instrument(level = "trace", skip_all)]
fn get_idl(
&mut self,
attr: &Attribute,
itype: IndexType,
idx_key: &str,
) -> Result<Option<IDLBitRange>, OperationError> {
get_idl!(self, attr, itype, idx_key)
}
fn get_db_s_uuid(&self) -> Result<Option<Uuid>, OperationError> {
self.db.get_db_s_uuid()
}
fn get_db_d_uuid(&self) -> Result<Option<Uuid>, OperationError> {
self.db.get_db_d_uuid()
}
fn get_db_ts_max(&self) -> Result<Option<Duration>, OperationError> {
self.db.get_db_ts_max()
}
fn get_key_handles(&mut self) -> Result<BTreeMap<KeyHandleId, KeyHandle>, OperationError> {
self.db.get_key_handles()
}
fn verify(&self) -> Vec<Result<(), ConsistencyError>> {
verify!(self)
}
fn is_dirty(&self) -> bool {
false
}
fn name2uuid(&mut self, name: &str) -> Result<Option<Uuid>, OperationError> {
name2uuid!(self, name)
}
fn externalid2uuid(&mut self, name: &str) -> Result<Option<Uuid>, OperationError> {
externalid2uuid!(self, name)
}
fn uuid2spn(&mut self, uuid: Uuid) -> Result<Option<Value>, OperationError> {
uuid2spn!(self, uuid)
}
fn uuid2rdn(&mut self, uuid: Uuid) -> Result<Option<String>, OperationError> {
uuid2rdn!(self, uuid)
}
fn list_idxs(&self) -> Result<Vec<String>, OperationError> {
// This is only used in tests or debug tools, so bypass the cache.
self.db.list_idxs()
}
fn list_id2entry(&self) -> Result<Vec<(u64, String)>, OperationError> {
// This is only used in tests or debug tools, so bypass the cache.
self.db.list_id2entry()
}
fn list_quarantined(&self) -> Result<Vec<(u64, String)>, OperationError> {
// No cache of quarantined entries.
self.db.list_quarantined()
}
fn list_index_content(
&self,
index_name: &str,
) -> Result<Vec<(String, IDLBitRange)>, OperationError> {
// This is only used in tests or debug tools, so bypass the cache.
self.db.list_index_content(index_name)
}
fn get_id2entry(&self, id: u64) -> Result<(u64, String), OperationError> {
// This is only used in tests or debug tools, so bypass the cache.
self.db.get_id2entry(id)
}
}
impl IdlArcSqliteTransaction for IdlArcSqliteWriteTransaction<'_> {
fn get_identry(
&mut self,
idl: &IdList,
) -> Result<Vec<Arc<EntrySealedCommitted>>, OperationError> {
get_identry!(self, idl, false)
}
fn get_identry_raw(&self, idl: &IdList) -> Result<Vec<IdRawEntry>, OperationError> {
get_identry_raw!(self, idl)
}
// fn exists_idx(&mut self, attr: &str, itype: IndexType) -> Result<bool, OperationError> {
// exists_idx!(self, attr, itype)
// }
#[instrument(level = "trace", skip_all)]
fn get_idl(
&mut self,
attr: &Attribute,
itype: IndexType,
idx_key: &str,
) -> Result<Option<IDLBitRange>, OperationError> {
get_idl!(self, attr, itype, idx_key)
}
fn get_db_s_uuid(&self) -> Result<Option<Uuid>, OperationError> {
self.db.get_db_s_uuid()
}
fn get_db_d_uuid(&self) -> Result<Option<Uuid>, OperationError> {
self.db.get_db_d_uuid()
}
fn get_db_ts_max(&self) -> Result<Option<Duration>, OperationError> {
match *self.op_ts_max {
Some(ts) => Ok(Some(ts)),
None => self.db.get_db_ts_max(),
}
}
fn get_key_handles(&mut self) -> Result<BTreeMap<KeyHandleId, KeyHandle>, OperationError> {
self.db.get_key_handles()
}
fn verify(&self) -> Vec<Result<(), ConsistencyError>> {
verify!(self)
}
fn is_dirty(&self) -> bool {
self.entry_cache.is_dirty()
}
fn name2uuid(&mut self, name: &str) -> Result<Option<Uuid>, OperationError> {
name2uuid!(self, name)
}
fn externalid2uuid(&mut self, name: &str) -> Result<Option<Uuid>, OperationError> {
externalid2uuid!(self, name)
}
fn uuid2spn(&mut self, uuid: Uuid) -> Result<Option<Value>, OperationError> {
uuid2spn!(self, uuid)
}
fn uuid2rdn(&mut self, uuid: Uuid) -> Result<Option<String>, OperationError> {
uuid2rdn!(self, uuid)
}
fn list_idxs(&self) -> Result<Vec<String>, OperationError> {
// This is only used in tests or debug tools, so bypass the cache.
self.db.list_idxs()
}
fn list_id2entry(&self) -> Result<Vec<(u64, String)>, OperationError> {
// This is only used in tests or debug tools, so bypass the cache.
self.db.list_id2entry()
}
fn list_quarantined(&self) -> Result<Vec<(u64, String)>, OperationError> {
// No cache of quarantined entries.
self.db.list_quarantined()
}
fn list_index_content(
&self,
index_name: &str,
) -> Result<Vec<(String, IDLBitRange)>, OperationError> {
// This is only used in tests or debug tools, so bypass the cache.
self.db.list_index_content(index_name)
}
fn get_id2entry(&self, id: u64) -> Result<(u64, String), OperationError> {
// This is only used in tests or debug tools, so bypass the cache.
self.db.get_id2entry(id)
}
}
impl IdlArcSqliteWriteTransaction<'_> {
#[cfg(any(test, debug_assertions))]
#[instrument(level = "debug", name = "idl_arc_sqlite::clear_cache", skip_all)]
pub fn clear_cache(&mut self) -> Result<(), OperationError> {
// I'm not sure rn if I want to reload these? If we reload these we kind of
// prevent verifications of the cached value working, but we also should
// clear these to check the db version of the value. Perhaps some extra
// dedicated testing needed?
/*
*self.op_ts_max = self.db.get_db_ts_max()?;
*self.allids = self.db.get_allids()?;
*self.maxid = self.get_id2entry_max_id()?;
*/
self.entry_cache.clear();
self.idl_cache.clear();
self.name_cache.clear();
Ok(())
}
#[instrument(level = "debug", name = "idl_arc_sqlite::commit", skip_all)]
pub fn commit(self) -> Result<(), OperationError> {
let IdlArcSqliteWriteTransaction {
db,
mut entry_cache,
mut idl_cache,
mut name_cache,
op_ts_max,
allids,
maxid,
keyhandles,
} = self;
// Write any dirty items to the disk.
entry_cache
.iter_mut_mark_clean()
.try_for_each(|(k, v)| match v {
Some(e) => db.write_identry(e),
None => db.delete_identry(*k),
})
.map_err(|e| {
admin_error!(?e, "Failed to sync entry cache to sqlite");
e
})?;
idl_cache
.iter_mut_mark_clean()
.try_for_each(|(k, v)| {
match v {
Some(idl) => db.write_idl(&k.a, k.i, k.k.as_str(), idl),
#[allow(clippy::unreachable)]
None => {
// Due to how we remove items, we always write an empty idl
// to the cache, so this should never be none.
//
// If it is none, this means we have memory corruption so we MUST
// panic.
// Why is `v` the `Option` type then?
unreachable!();
}
}
})
.map_err(|e| {
admin_error!(?e, "Failed to sync idl cache to sqlite");
e
})?;
name_cache
.iter_mut_mark_clean()
.try_for_each(|(k, v)| match (k, v) {
(NameCacheKey::Name2Uuid(k), Some(NameCacheValue::U(v))) => {
db.write_name2uuid_add(k, *v)
}
(NameCacheKey::Name2Uuid(k), None) => db.write_name2uuid_rem(k),
(NameCacheKey::ExternalId2Uuid(k), Some(NameCacheValue::U(v))) => {
db.write_externalid2uuid_add(k, *v)
}
(NameCacheKey::ExternalId2Uuid(k), None) => db.write_externalid2uuid_rem(k),
(NameCacheKey::Uuid2Spn(uuid), Some(NameCacheValue::S(v))) => {
db.write_uuid2spn(*uuid, Some(v))
}
(NameCacheKey::Uuid2Spn(uuid), None) => db.write_uuid2spn(*uuid, None),
(NameCacheKey::Uuid2Rdn(uuid), Some(NameCacheValue::R(v))) => {
db.write_uuid2rdn(*uuid, Some(v))
}
(NameCacheKey::Uuid2Rdn(uuid), None) => db.write_uuid2rdn(*uuid, None),
_ => Err(OperationError::InvalidCacheState),
})
.map_err(|e| {
admin_error!(?e, "Failed to sync name cache to sqlite");
e
})?;
// Ensure the db commit succeeds first.
db.commit()?;
// Can no longer fail from this point.
op_ts_max.commit();
name_cache.commit();
idl_cache.commit();
allids.commit();
maxid.commit();
keyhandles.commit();
// Unlock the entry cache last to remove contention on everything else.
entry_cache.commit();
Ok(())
}
pub fn get_db_ruv(&self) -> Result<BTreeSet<Cid>, OperationError> {
self.db.get_db_ruv()
}
pub fn write_db_ruv<I, J>(&mut self, added: I, removed: J) -> Result<(), OperationError>
where
I: Iterator<Item = Cid>,
J: Iterator<Item = Cid>,
{
self.db.write_db_ruv(added, removed)
}
pub fn get_id2entry_max_id(&self) -> Result<u64, OperationError> {
Ok(*self.maxid)
}
pub fn set_id2entry_max_id(&mut self, mid: u64) {
assert!(mid > *self.maxid);
*self.maxid = mid;
}
pub fn write_identries<'b, I>(&'b mut self, mut entries: I) -> Result<(), OperationError>
where
I: Iterator<Item = &'b Entry<EntrySealed, EntryCommitted>>,
{
entries.try_for_each(|e| {
trace!("Inserting {:?} to cache", e.get_id());
if e.get_id() == 0 {
Err(OperationError::InvalidEntryId)
} else {
(*self.allids).insert_id(e.get_id());
self.entry_cache
.insert_dirty(e.get_id(), Arc::new(e.clone()));
Ok(())
}
})
}
pub fn write_identries_raw<I>(&mut self, entries: I) -> Result<(), OperationError>
where
I: Iterator<Item = IdRawEntry>,
{
// Drop the entry cache.
self.entry_cache.clear();
// Write the raw ents
self.db
.write_identries_raw(entries)
.and_then(|()| self.db.get_allids())
.map(|mut ids| {
// Update allids since we cleared them and need to reset it in the cache.
std::mem::swap(self.allids.deref_mut(), &mut ids);
})
}
pub fn delete_identry<I>(&mut self, mut idl: I) -> Result<(), OperationError>
where
I: Iterator<Item = u64>,
{
idl.try_for_each(|i| {
trace!("Removing {:?} from cache", i);
if i == 0 {
Err(OperationError::InvalidEntryId)
} else {
(*self.allids).remove_id(i);
self.entry_cache.remove_dirty(i);
Ok(())
}
})
}
pub fn write_idl(
&mut self,
attr: &Attribute,
itype: IndexType,
idx_key: &str,
idl: &IDLBitRange,
) -> Result<(), OperationError> {
let cache_key = IdlCacheKey {
a: attr.clone(),
i: itype,
k: idx_key.into(),
};
// On idl == 0 the db will remove this, and synthesise an empty IdList on a miss
// but we can cache this as a new empty IdList instead, so that we can avoid the
// db lookup on this idl.
if idl.is_empty() {
self.idl_cache
.insert_dirty(cache_key, Box::new(IDLBitRange::new()));
} else {
self.idl_cache
.insert_dirty(cache_key, Box::new(idl.clone()));
}
// self.db.write_idl(audit, attr, itype, idx_key, idl)
Ok(())
}
pub fn optimise_dirty_idls(&mut self) {
self.idl_cache.iter_mut_dirty().for_each(|(k, maybe_idl)| {
if let Some(idl) = maybe_idl {
if idl.maybe_compress() {
trace!(?k, "Compressed idl");
}
}
})
}
pub fn is_idx_slopeyness_generated(&self) -> Result<bool, OperationError> {
self.db.is_idx_slopeyness_generated()
}
pub fn get_idx_slope(&self, ikey: &IdxKey) -> Result<Option<IdxSlope>, OperationError> {
self.db.get_idx_slope(ikey)
}
/// Index Slope Analysis. For the purpose of external modules you can consider this as a
/// module that generates "weights" for each index that we have. Smaller values are faster
/// indexes - larger values are more costly ones. This is not intended to yield perfect
/// weights. The intent is to separate over obviously more effective indexes rather than
/// to min-max the fine tuning of these. Consider name=foo vs class=*. name=foo will always
/// be better than class=*, but comparing name=foo to spn=foo is "much over muchness" since
/// both are really fast.
pub fn analyse_idx_slopes(&mut self) -> Result<(), OperationError> {
/*
* Inside of this analysis there are two major factors we need to understand
*
* * What is the variation of idl lengths within an index?
* * How man keys are stored in this index?
*
* Since we have the filter2idl threshold, we want to find "what is the smallest
* and most unique index asap so we can exit faster". This allows us to avoid
* loading larger most costly indexes that either have large idls, high variation
* or few keys and are likely to miss and have to go out to disk.
*
* A few methods were proposed, but thanks to advice from Perri Boulton (psychology
* researcher with a background in statistics), we were able to device a reasonable
* approach.
*
* These are commented in line to help understand the process.
*/
/*
* Step 1 - we have an index like "idx_eq_member". It has data that looks somewhat
* like:
*
* key | idl
* -------+------------
* uuid_a | [1, 2, 3, ...]
* -------+------------
* uuid_b | [4, 5, 6, ...]
*
* We need to collect this into a single vec of "how long is each idl". Since we have
* each idl in the vec, the length of the vec is also the number of keys in the set.
* This yields for us:
*
* idx_eq_member: [4.0, 5.0, ...]
* where each f64 value is the float representation of the length of idl.
*
* We then assemble these to a map so we have each idxkey and it's associated list
* of idl lens.
*/
let mut data: HashMap<IdxKey, Vec<f64>> = HashMap::new();
self.idl_cache.iter_dirty().for_each(|(k, maybe_idl)| {
if let Some(idl) = maybe_idl {
let idl_len: u32 = idl.len().try_into().unwrap_or(u32::MAX);
// Convert to something we can use.
let idl_len = f64::from(idl_len);
let kref = IdxKeyRef::new(&k.a, &k.i);
if idl_len > 0.0 {
// It's worth looking at. Anything len 0 will be removed.
if let Some(lens) = data.get_mut(&kref as &dyn IdxKeyToRef) {
lens.push(idl_len)
} else {
data.insert(kref.as_key(), vec![idl_len]);
}
}
}
});
/*
* So now for each of our sets:
*
* idx_eq_member: [4.0, 5.0, ...]
* idx_eq_name : [1.0, 1.0, 1.0, ...]
*
* To get the variability, we calculate the normal distribution of the set of values
* and then using this variance we use the 1st deviation (~85%) value to assert that
* 85% or more of the values in this set will be "equal or less" than this length.*
*
* So given say:
* [1.0, 1.0, 1.0, 1.0]
* We know that the sd_1 will be 1.0. Given:
* [1.0, 1.0, 2.0, 3.0]
* We know that it will be ~2.57 (mean 1.75 + sd of 0.82).
*
* The other factor is number of keys. This is thankfully easy! We have that from
* vec.len().
*
* We can now calculate the index slope. Why is it a slope you ask? Because we
* plot the data out on a graph, with "variability" on the y axis, and number of
* keys on the x.
*
* Lets plot our data we just added.
*
* |
* 4 +
* |
* 3 +
* |
* 2 + * eq_member
* |
* 1 + * eq_name
* |
* +--+--+--+--+--
* 1 2 3 4
*
* Now, if we were to connect a line from (0,0) to each point we get a line with an angle.
*
* |
* 4 +
* |
* 3 +
* |
* 2 + * eq_member
* |
* 1 + * eq_name
* |/---------/
* +--+--+--+--+--
* 1 2 3 4
* |
* 4 +
* |
* 3 +
* |
* 2 + * eq_member
* | /--/
* 1 + /--/ * eq_name
* |/--/
* +--+--+--+--+--
* 1 2 3 4
*
* (Look it's ascii art, don't judge.).
*
* Point is that eq_member is "steeper" and eq_name is "shallower". This is what we call
* the "slopeyness" aka the jank of the line, or more precisely, the angle.
*
* Now we need a way to numerically compare these lines. Since the points could be
* anywhere on our graph:
*
* |
* 4 + *
* |
* 3 + *
* |
* 2 + *
* |
* 1 + *
* |
* +--+--+--+--+--
* 1 2 3 4
*
* While we can see what's obvious or best here, a computer has to know it. So we now
* assume that these points construct a triangle, going through (0,0), (x, 0) and (x, y).
*
*
* Λ│
* ╱ │
* ╱ │
* ╱ │
* ╱ │
* ╱ │
* ╱ │
* ╱ │ sd_1
* ╱ │
* ╱ │
* ───────────┼
* nkeys
*
* Since this is right angled we can use arctan to work out the degrees of the line. This
* gives us a value from 1.0 to 90.0 (We clamp to a minimum of 1.0, because we use 0 as "None"
* in the NonZeroU8 type in filter.rs, which allows ZST optimisation)
*
* The problem is that we have to go from float to u8 - this means we lose decimal precision
* in the conversion. To lessen this, we multiply by 2 to give some extra weight to each angle
* to minimise this loss and then we convert.
*
* And there we have it! A slope factor of the index! A way to compare these sets quickly
* at query optimisation time to minimise index access.
*/
let slopes: HashMap<_, _> = data
.into_iter()
.filter_map(|(k, lens)| {
let slope_factor = Self::calculate_sd_slope(&lens);
if slope_factor == 0 || slope_factor == IdxSlope::MAX {
None
} else {
Some((k, slope_factor))
}
})
.collect();
trace!(?slopes, "Generated slopes");
// Write the data down
self.db.store_idx_slope_analysis(&slopes)
}
fn calculate_sd_slope(data: &[f64]) -> IdxSlope {
let (n_keys, sd_1) = if data.len() >= 2 {
// We can only do SD on sets greater than 2
let l: u32 = data.len().try_into().unwrap_or(u32::MAX);
let c = f64::from(l);
let mean = data.iter().take(u32::MAX as usize).sum::<f64>() / c;
let variance: f64 = data
.iter()
.take(u32::MAX as usize)
.map(|len| {
let delta = mean - len;
delta * delta
})
.sum::<f64>()
/ (c - 1.0);
let sd = variance.sqrt();
// This is saying ~85% of values will be at least this len or less.
let sd_1 = mean + sd;
(c, sd_1)
} else if data.len() == 1 {
(1.0, data[0])
} else {
// Can't resolve.
return IdxSlope::MAX;
};
// Now we know sd_1 and number of keys. We can use this as a triangle to work out
// the angle along the hypotenuse. We use this angle - or slope - to show which
// elements have the smallest sd_1 and most keys available. Then because this
// is bound between 0.0 -> 90.0, we "unfurl" this around a half circle by multiplying
// by 2. This gives us a little more precision when we drop the decimal point.
let sf = (sd_1 / n_keys).atan().to_degrees() * 2.8;
// Now these are fractions, and we can't use those in u8, so we clamp the min/max values
// that we expect to be yielded.
let sf = sf.clamp(1.0, 254.0);
if !sf.is_finite() {
IdxSlope::MAX
} else {
// SAFETY
// `sf` is clamped between 1.0 and 180.0 above, ensuring it is
// always in range.
unsafe { sf.to_int_unchecked::<IdxSlope>() }
}
}
pub fn quarantine_entry(&self, id: u64) -> Result<(), OperationError> {
self.db.quarantine_entry(id)
}
pub fn restore_quarantined(&self, id: u64) -> Result<(), OperationError> {
self.db.restore_quarantined(id)
}
pub fn create_name2uuid(&self) -> Result<(), OperationError> {
self.db.create_name2uuid()
}
pub fn write_name2uuid_add(
&mut self,
uuid: Uuid,
add: BTreeSet<String>,
) -> Result<(), OperationError> {
add.into_iter().for_each(|k| {
let cache_key = NameCacheKey::Name2Uuid(k);
let cache_value = NameCacheValue::U(uuid);
self.name_cache.insert_dirty(cache_key, cache_value)
});
Ok(())
}
pub fn write_name2uuid_rem(&mut self, rem: BTreeSet<String>) -> Result<(), OperationError> {
rem.into_iter().for_each(|k| {
// why not just a for loop here...
let cache_key = NameCacheKey::Name2Uuid(k);
self.name_cache.remove_dirty(cache_key)
});
Ok(())
}
pub fn create_externalid2uuid(&self) -> Result<(), OperationError> {
self.db.create_externalid2uuid()
}
pub fn write_externalid2uuid_add(
&mut self,
uuid: Uuid,
add: String,
) -> Result<(), OperationError> {
let cache_key = NameCacheKey::ExternalId2Uuid(add);
let cache_value = NameCacheValue::U(uuid);
self.name_cache.insert_dirty(cache_key, cache_value);
Ok(())
}
pub fn write_externalid2uuid_rem(&mut self, rem: String) -> Result<(), OperationError> {
let cache_key = NameCacheKey::ExternalId2Uuid(rem);
self.name_cache.remove_dirty(cache_key);
Ok(())
}
pub fn create_uuid2spn(&self) -> Result<(), OperationError> {
self.db.create_uuid2spn()
}
pub fn write_uuid2spn(&mut self, uuid: Uuid, k: Option<Value>) -> Result<(), OperationError> {
let cache_key = NameCacheKey::Uuid2Spn(uuid);
match k {
Some(v) => self
.name_cache
.insert_dirty(cache_key, NameCacheValue::S(Box::new(v))),
None => self.name_cache.remove_dirty(cache_key),
}
Ok(())
}
pub fn create_uuid2rdn(&self) -> Result<(), OperationError> {
self.db.create_uuid2rdn()
}
pub fn write_uuid2rdn(&mut self, uuid: Uuid, k: Option<String>) -> Result<(), OperationError> {
let cache_key = NameCacheKey::Uuid2Rdn(uuid);
match k {
Some(s) => self
.name_cache
.insert_dirty(cache_key, NameCacheValue::R(s)),
None => self.name_cache.remove_dirty(cache_key),
}
Ok(())
}
pub fn create_idx(&self, attr: &Attribute, itype: IndexType) -> Result<(), OperationError> {
// We don't need to affect this, so pass it down.
self.db.create_idx(attr, itype)
}
/// ⚠️ - This function will destroy all indexes in the database.
///
/// It should only be called internally by the backend in limited and
/// specific situations.
#[instrument(level = "trace", skip_all)]
pub fn danger_purge_idxs(&mut self) -> Result<(), OperationError> {
debug!("CLEARING CACHE");
self.db.danger_purge_idxs().map(|()| {
self.idl_cache.clear();
self.name_cache.clear();
})
}
/// ⚠️ - This function will destroy all entries in the database.
///
/// It should only be called internally by the backend in limited and
/// specific situations.
#[instrument(level = "trace", skip_all)]
pub fn danger_purge_id2entry(&mut self) -> Result<(), OperationError> {
self.db.danger_purge_id2entry().map(|()| {
let mut ids = IDLBitRange::new();
ids.compress();
std::mem::swap(self.allids.deref_mut(), &mut ids);
self.entry_cache.clear();
})
}
pub fn write_db_s_uuid(&self, nsid: Uuid) -> Result<(), OperationError> {
self.db.write_db_s_uuid(nsid)
}
pub fn write_db_d_uuid(&self, nsid: Uuid) -> Result<(), OperationError> {
self.db.write_db_d_uuid(nsid)
}
pub fn set_db_ts_max(&mut self, ts: Duration) -> Result<(), OperationError> {
*self.op_ts_max = Some(ts);
self.db.set_db_ts_max(ts)
}
pub(crate) fn get_db_index_version(&self) -> Result<i64, OperationError> {
self.db.get_db_index_version()
}
pub(crate) fn set_db_index_version(&self, v: i64) -> Result<(), OperationError> {
self.db.set_db_index_version(v)
}
pub fn setup(&mut self) -> Result<(), OperationError> {
self.db
.setup()
.and_then(|()| self.db.get_allids())
.map(|mut ids| {
std::mem::swap(self.allids.deref_mut(), &mut ids);
})
.and_then(|()| self.db.get_id2entry_max_id())
.map(|mid| {
*self.maxid = mid;
})
}
}
impl IdlArcSqlite {
pub fn new(cfg: &BackendConfig, vacuum: bool) -> Result<Self, OperationError> {
let db = IdlSqlite::new(cfg, vacuum)?;
// Autotune heuristic.
let mut cache_size = cfg.arcsize.unwrap_or_else(|| {
// Due to changes in concread, we can now scale this up! We now aim for 120%
// of entries.
db.get_allids_count()
.map(|c| {
let tmpsize = ((c / 5) as usize) * 6;
// if our calculation's too small anyway, just set it to the minimum target
std::cmp::max(tmpsize, DEFAULT_CACHE_TARGET)
})
.unwrap_or(DEFAULT_CACHE_TARGET)
});
if cache_size < DEFAULT_CACHE_TARGET {
admin_warn!(
old = cache_size,
new = DEFAULT_CACHE_TARGET,
"Configured Arc Cache size too low, increasing..."
);
cache_size = DEFAULT_CACHE_TARGET; // this being above the log was an uncaught bug
}
let entry_cache = ARCacheBuilder::new()
.set_expected_workload(
cache_size,
cfg.pool_size as usize,
DEFAULT_CACHE_RMISS,
DEFAULT_CACHE_WMISS,
false,
)
.set_reader_quiesce(true)
.build()
.ok_or_else(|| {
admin_error!("Failed to construct entry_cache");
OperationError::InvalidState
})?;
// The idl cache should have smaller items, and is critical for fast searches
// so we allow it to have a higher ratio of items relative to the entries.
let idl_cache = ARCacheBuilder::new()
.set_expected_workload(
cache_size * DEFAULT_IDL_CACHE_RATIO,
cfg.pool_size as usize,
DEFAULT_CACHE_RMISS,
DEFAULT_CACHE_WMISS,
false,
)
.set_reader_quiesce(true)
.build()
.ok_or_else(|| {
admin_error!("Failed to construct idl_cache");
OperationError::InvalidState
})?;
let name_cache = ARCacheBuilder::new()
.set_expected_workload(
cache_size * DEFAULT_NAME_CACHE_RATIO,
cfg.pool_size as usize,
DEFAULT_CACHE_RMISS,
DEFAULT_CACHE_WMISS,
true,
)
.set_reader_quiesce(true)
.build()
.ok_or_else(|| {
admin_error!("Failed to construct name_cache");
OperationError::InvalidState
})?;
let allids = CowCell::new(IDLBitRange::new());
let maxid = CowCell::new(0);
let keyhandles = CowCell::new(HashMap::default());
let op_ts_max = CowCell::new(None);
Ok(IdlArcSqlite {
db,
entry_cache,
idl_cache,
name_cache,
op_ts_max,
allids,
maxid,
keyhandles,
})
}
pub fn try_quiesce(&self) {
self.entry_cache.try_quiesce();
self.idl_cache.try_quiesce();
self.name_cache.try_quiesce();
}
pub fn read(&self) -> Result<IdlArcSqliteReadTransaction, OperationError> {
// IMPORTANT! Always take entrycache FIRST
let entry_cache_read = self.entry_cache.read();
let db_read = self.db.read()?;
let idl_cache_read = self.idl_cache.read();
let name_cache_read = self.name_cache.read();
let allids_read = self.allids.read();
Ok(IdlArcSqliteReadTransaction {
db: db_read,
entry_cache: entry_cache_read,
idl_cache: idl_cache_read,
name_cache: name_cache_read,
allids: allids_read,
})
}
pub fn write(&self) -> Result<IdlArcSqliteWriteTransaction, OperationError> {
// IMPORTANT! Always take entrycache FIRST
let entry_cache_write = self.entry_cache.write();
let db_write = self.db.write()?;
let idl_cache_write = self.idl_cache.write();
let name_cache_write = self.name_cache.write();
let op_ts_max_write = self.op_ts_max.write();
let allids_write = self.allids.write();
let maxid_write = self.maxid.write();
let keyhandles_write = self.keyhandles.write();
Ok(IdlArcSqliteWriteTransaction {
db: db_write,
entry_cache: entry_cache_write,
idl_cache: idl_cache_write,
name_cache: name_cache_write,
op_ts_max: op_ts_max_write,
allids: allids_write,
maxid: maxid_write,
keyhandles: keyhandles_write,
})
}
/*
pub fn stats_audit(&self, audit: &mut AuditScope) {
let entry_stats = self.entry_cache.view_stats();
let idl_stats = self.idl_cache.view_stats();
ladmin_info!(audit, "entry_cache stats -> {:?}", *entry_stats);
ladmin_info!(audit, "idl_cache stats -> {:?}", *idl_stats);
}
*/
}