orca/main.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
#![deny(warnings)]
#![warn(unused_extern_crates)]
#![allow(clippy::panic)]
#![deny(clippy::unreachable)]
#![deny(clippy::await_holding_lock)]
#![deny(clippy::needless_pass_by_value)]
#![deny(clippy::trivially_copy_pass_by_ref)]
#[cfg(not(any(target_family = "windows", target_os = "illumos")))]
#[global_allocator]
static GLOBAL: mimalloc::MiMalloc = mimalloc::MiMalloc;
#[macro_use]
extern crate tracing;
use std::process::ExitCode;
use clap::Parser;
use opt::OrcaOpt;
use crate::profile::{Profile, ProfileBuilder};
use tokio::{runtime::Runtime, sync::broadcast};
mod error;
mod generate;
mod kani;
mod model;
mod models;
mod opt;
mod populate;
mod profile;
mod run;
mod state;
mod stats;
impl OrcaOpt {
fn debug(&self) -> bool {
match self {
OrcaOpt::Version { common }
| OrcaOpt::SetupWizard { common, .. }
| OrcaOpt::TestConnection { common, .. }
| OrcaOpt::GenerateData { common, .. }
| OrcaOpt::PopulateData { common, .. }
| OrcaOpt::Run { common, .. } => common.debug,
}
}
}
fn main() -> ExitCode {
let opt = OrcaOpt::parse();
if opt.debug() {
::std::env::set_var(
"RUST_LOG",
"orca=debug,kanidm=debug,kanidm_client=debug,webauthn=debug",
);
}
tracing_subscriber::fmt::init();
info!("Orca - the Kanidm Load Testing Utility.");
debug!("cli -> {:?}", opt);
match opt {
OrcaOpt::Version { .. } => {
println!("orca {}", env!("KANIDM_PKG_VERSION"));
ExitCode::SUCCESS
}
// Build the profile and the test dimensions.
OrcaOpt::SetupWizard {
common: _,
admin_password,
idm_admin_password,
control_uri,
seed,
profile_path,
threads,
model,
dump_raw_data,
} => {
// For now I hardcoded some dimensions, but we should prompt
// the user for these later.
let seed = seed.map(|seed| {
if seed < 0 {
seed.wrapping_mul(-1) as u64
} else {
seed as u64
}
});
let extra_uris = Vec::with_capacity(0);
let builder = ProfileBuilder::new(
control_uri,
extra_uris,
admin_password,
idm_admin_password,
model,
threads,
dump_raw_data,
)
.seed(seed);
let profile = match builder.build() {
Ok(p) => p,
Err(_err) => {
return ExitCode::FAILURE;
}
};
match profile.write_to_path(&profile_path) {
Ok(_) => ExitCode::SUCCESS,
Err(_err) => ExitCode::FAILURE,
}
}
// Test the connection
OrcaOpt::TestConnection {
common: _,
profile_path,
} => {
let profile = match Profile::try_from(profile_path.as_path()) {
Ok(p) => p,
Err(_err) => {
return ExitCode::FAILURE;
}
};
info!("Performing conntest of {}", profile.control_uri());
// we're okay with just one thread here
let runtime = build_tokio_runtime(Some(1));
runtime.block_on(async {
match kani::KanidmOrcaClient::new(&profile).await {
Ok(_) => {
info!("success");
ExitCode::SUCCESS
}
Err(_err) => ExitCode::FAILURE,
}
})
}
// From the profile and test dimensions, generate the data into a state file.
OrcaOpt::GenerateData {
common: _,
profile_path,
state_path,
} => {
let profile = match Profile::try_from(profile_path.as_path()) {
Ok(p) => p,
Err(_err) => {
return ExitCode::FAILURE;
}
};
// This is single threaded.
let runtime = build_tokio_runtime(Some(1));
runtime.block_on(async {
let client = match kani::KanidmOrcaClient::new(&profile).await {
Ok(client) => client,
Err(_err) => {
return ExitCode::FAILURE;
}
};
// do-it.
let state = match generate::populate(&client, profile).await {
Ok(s) => s,
Err(_err) => {
return ExitCode::FAILURE;
}
};
match state.write_to_path(&state_path) {
Ok(_) => ExitCode::SUCCESS,
Err(_err) => ExitCode::FAILURE,
}
})
}
//
OrcaOpt::PopulateData {
common: _,
state_path,
} => {
let state = match state::State::try_from(state_path.as_path()) {
Ok(p) => p,
Err(_err) => {
return ExitCode::FAILURE;
}
};
// here we want all threads available to speed up the process.
let runtime = build_tokio_runtime(state.thread_count);
runtime.block_on(async {
match populate::preflight(state).await {
Ok(_) => ExitCode::SUCCESS,
Err(_err) => ExitCode::FAILURE,
}
})
}
// Run the test based on the state file.
OrcaOpt::Run {
common: _,
state_path,
} => {
let state = match state::State::try_from(state_path.as_path()) {
Ok(p) => p,
Err(_err) => {
return ExitCode::FAILURE;
}
};
// here we need to create one less worker compared to the desired amount since we later call `spawn_blocking`, which consumes
// an extra thread all on its own
let runtime = build_tokio_runtime(state.thread_count);
// We have a broadcast channel setup for controlling the state of
// various actors and parts.
//
// We want a small amount of backlog because there are a few possible
// commands that could be sent.
runtime.block_on(async {
let (control_tx, control_rx) = broadcast::channel(8);
let mut run_execute = tokio::task::spawn(run::execute(state, control_rx));
loop {
tokio::select! {
// Note that we pass a &mut handle here because we want the future to join
// but not be consumed each loop iteration.
result = &mut run_execute => {
match result {
Ok(_) => {
return ExitCode::SUCCESS;
}
Err(_err) => {
return ExitCode::FAILURE;
}
};
}
// Signal handling.
Ok(()) = tokio::signal::ctrl_c() => {
info!("Stopping Task ...");
let _ = control_tx.send(run::Signal::Stop);
}
Some(()) = async move {
let sigterm = tokio::signal::unix::SignalKind::terminate();
#[allow(clippy::unwrap_used)]
tokio::signal::unix::signal(sigterm).unwrap().recv().await
} => {
// Kill it with fire I guess.
return ExitCode::FAILURE;
}
Some(()) = async move {
let sigterm = tokio::signal::unix::SignalKind::alarm();
#[allow(clippy::unwrap_used)]
tokio::signal::unix::signal(sigterm).unwrap().recv().await
} => {
// Ignore
}
Some(()) = async move {
let sigterm = tokio::signal::unix::SignalKind::hangup();
#[allow(clippy::unwrap_used)]
tokio::signal::unix::signal(sigterm).unwrap().recv().await
} => {
// Ignore
}
Some(()) = async move {
let sigterm = tokio::signal::unix::SignalKind::user_defined1();
#[allow(clippy::unwrap_used)]
tokio::signal::unix::signal(sigterm).unwrap().recv().await
} => {
// Ignore
}
Some(()) = async move {
let sigterm = tokio::signal::unix::SignalKind::user_defined2();
#[allow(clippy::unwrap_used)]
tokio::signal::unix::signal(sigterm).unwrap().recv().await
} => {
// Ignore
}
}
}
})
}
}
}
/// Build the tokio runtime with the configured number of threads. If set to None, then the maximum
/// of the system is used.
fn build_tokio_runtime(threads: Option<usize>) -> Runtime {
let mut builder = tokio::runtime::Builder::new_multi_thread();
match threads {
Some(threads) => builder.worker_threads(threads),
None => &mut builder,
}
.enable_all()
.build()
.expect("Failed to build tokio runtime")
}