kanidmd_lib/repl/
supplier.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
use super::proto::{
    ReplEntryV1, ReplIncrementalContext, ReplIncrementalEntryV1, ReplRefreshContext, ReplRuvRange,
};
use super::ruv::{RangeDiffStatus, ReplicationUpdateVector, ReplicationUpdateVectorTransaction};
use crate::be::BackendTransaction;
use crate::prelude::*;

use crate::be::keystorage::{KeyHandle, KeyHandleId};
use kanidm_lib_crypto::mtls::build_self_signed_server_and_client_identity;
use kanidm_lib_crypto::prelude::{PKey, Private, X509};

impl<'a> QueryServerWriteTransaction<'a> {
    fn supplier_generate_key_cert(
        &mut self,
        domain_name: &str,
    ) -> Result<(PKey<Private>, X509), OperationError> {
        // Invalid, must need to re-generate.
        let s_uuid = self.get_server_uuid();

        let (private, x509) = build_self_signed_server_and_client_identity(
            s_uuid,
            domain_name,
            REPL_MTLS_CERTIFICATE_DAYS,
        )
        .map_err(|err| {
            error!(?err, "Unable to generate self signed key/cert");
            // What error?
            OperationError::CryptographyError
        })?;

        let kh = KeyHandle::X509Key {
            private: private.clone(),
            x509: x509.clone(),
        };

        self.get_be_txn()
            .set_key_handle(KeyHandleId::ReplicationKey, kh)
            .map_err(|err| {
                error!(?err, "Unable to persist replication key");
                err
            })
            .map(|()| (private, x509))
    }

    #[instrument(level = "info", skip_all)]
    pub fn supplier_renew_key_cert(&mut self, domain_name: &str) -> Result<(), OperationError> {
        self.supplier_generate_key_cert(domain_name).map(|_| ())
    }

    #[instrument(level = "info", skip_all)]
    pub fn supplier_get_key_cert(
        &mut self,
        domain_name: &str,
    ) -> Result<(PKey<Private>, X509), OperationError> {
        // Later we need to put this through a HSM or similar, but we will always need a way
        // to persist a handle, so we still need the db write and load components.

        // Does the handle exist?
        let maybe_key_handle = self
            .get_be_txn()
            .get_key_handle(KeyHandleId::ReplicationKey)
            .map_err(|err| {
                error!(?err, "Unable to access replication key");
                err
            })?;

        // Can you process the keyhandle?
        let key_cert = match maybe_key_handle {
            Some(KeyHandle::X509Key { private, x509 }) => (private, x509),
            /*
            Some(Keyhandle::...) => {
                // invalid key
                // error? regenerate?
            }
            */
            None => self.supplier_generate_key_cert(domain_name)?,
        };

        Ok(key_cert)
    }
}

impl<'a> QueryServerReadTransaction<'a> {
    // Given a consumers state, calculate the differential of changes they
    // need to be sent to bring them to the equivalent state.

    // We use the RUV or Cookie to determine if:
    // * The consumer requires a full-reinit.
    // * Which entry attr-states need to be sent, if any

    #[instrument(level = "debug", skip_all)]
    pub fn supplier_provide_changes(
        &mut self,
        ctx_ruv: ReplRuvRange,
    ) -> Result<ReplIncrementalContext, OperationError> {
        // Convert types if needed. This way we can compare ruv's correctly.
        let (ctx_domain_uuid, ctx_ranges) = match ctx_ruv {
            ReplRuvRange::V1 {
                domain_uuid,
                ranges,
            } => (domain_uuid, ranges),
        };

        if ctx_domain_uuid != self.d_info.d_uuid {
            error!("Replication - Consumer Domain UUID does not match our local domain uuid.");
            debug!(consumer_domain_uuid = ?ctx_domain_uuid, supplier_domain_uuid = ?self.d_info.d_uuid);
            return Ok(ReplIncrementalContext::DomainMismatch);
        }

        // This is a reasonably tricky part of the code, because we are attempting to do a
        // distributed and async liveness check. What content has the consumer seen? What
        // could they have trimmed from their own RUV?
        //
        // Since tombstone purging always creates an anchor, then there are always "pings"
        // effectively going out of "empty" changes that drive the RUV forward. This assists us
        // to detect this situation.
        //
        // If a server has been replicating correctly, then it should have at least *some* overlap
        // with us since content has always advanced.
        //
        // If a server has "stalled" then it will have *no* overlap. This can manifest as a need
        // to supply all ranges as though they were new because the lagging consumer has trimmed out
        // all the old content.
        //
        // When a server is newly added it will have overlap because it will have refreshed from
        // another server.
        //
        // When a server is "trimmed" from the RUV, it no longer influences the overlap decision
        // because the other servers will have continued to advance.

        let trim_cid = self.trim_cid().clone();

        let supplier_ruv = self.get_be_txn().get_ruv();

        let our_ranges = supplier_ruv.filter_ruv_range(&trim_cid).map_err(|e| {
            error!(err = ?e, "Unable to access supplier RUV range");
            e
        })?;

        // Compare this to our internal ranges - work out the list of entry
        // id's that are now different.

        let supply_ranges = ReplicationUpdateVector::range_diff(&ctx_ranges, &our_ranges);

        // If empty, return an empty set of changes!

        let ranges = match supply_ranges {
            RangeDiffStatus::Ok(ranges) => ranges,
            RangeDiffStatus::Refresh { lag_range } => {
                error!("Replication - Consumer is lagging and must be refreshed.");
                info!(?lag_range);
                debug!(consumer_ranges = ?ctx_ranges);
                debug!(supplier_ranges = ?our_ranges);
                return Ok(ReplIncrementalContext::RefreshRequired);
            }
            RangeDiffStatus::Unwilling { adv_range } => {
                error!("Replication - Supplier is lagging and must be investigated.");
                info!(?adv_range);
                debug!(consumer_ranges = ?ctx_ranges);
                debug!(supplier_ranges = ?our_ranges);
                return Ok(ReplIncrementalContext::UnwillingToSupply);
            }
            RangeDiffStatus::Critical {
                lag_range,
                adv_range,
            } => {
                error!("Replication Critical - Consumers are advanced of us, and also lagging! This must be immediately investigated!");
                info!(?lag_range);
                info!(?adv_range);
                debug!(consumer_ranges = ?ctx_ranges);
                debug!(supplier_ranges = ?our_ranges);
                return Ok(ReplIncrementalContext::UnwillingToSupply);
            }
            RangeDiffStatus::NoRUVOverlap => {
                error!("Replication Critical - Consumers RUV has desynchronised and diverged! This must be immediately investigated!");
                debug!(consumer_ranges = ?ctx_ranges);
                debug!(supplier_ranges = ?our_ranges);
                return Ok(ReplIncrementalContext::UnwillingToSupply);
            }
        };

        debug!("these ranges will be supplied");
        debug!(supply_ranges = ?ranges);
        debug!(consumer_ranges = ?ctx_ranges);
        debug!(supplier_ranges = ?our_ranges);

        if ranges.is_empty() {
            debug!("No Changes Available");
            return Ok(ReplIncrementalContext::NoChangesAvailable);
        }

        // From the set of change id's, fetch those entries.
        // This is done by supplying the ranges to the be which extracts
        // the entries affected by the idls in question.
        let entries = self.get_be_txn().retrieve_range(&ranges).map_err(|e| {
            admin_error!(?e, "backend failure");
            OperationError::Backend
        })?;

        // Separate the entries into schema, meta and remaining.
        let (schema_entries, rem_entries): (Vec<_>, Vec<_>) = entries.into_iter().partition(|e| {
            e.get_ava_set(Attribute::Class)
                .map(|cls| {
                    cls.contains(&EntryClass::AttributeType.into() as &PartialValue)
                        || cls.contains(&EntryClass::ClassType.into() as &PartialValue)
                })
                .unwrap_or(false)
        });

        let (meta_entries, entries): (Vec<_>, Vec<_>) = rem_entries.into_iter().partition(|e| {
            e.get_ava_set(Attribute::Class)
                .map(|cls| {
                    cls.contains(&EntryClass::DomainInfo.into() as &PartialValue)
                        || cls.contains(&EntryClass::SystemInfo.into() as &PartialValue)
                        || cls.contains(&EntryClass::SystemConfig.into() as &PartialValue)
                        || cls.contains(&EntryClass::KeyProvider.into() as &PartialValue)
                })
                .unwrap_or(false)
        });

        trace!(?schema_entries);
        trace!(?meta_entries);
        trace!(?entries);

        // For each entry, determine the changes that exist on the entry that fall
        // into the ruv range - reduce to a incremental set of changes.

        let schema = self.get_schema();
        let domain_version = self.d_info.d_vers;
        let domain_patch_level = if self.d_info.d_devel_taint {
            u32::MAX
        } else {
            self.d_info.d_patch_level
        };
        let domain_uuid = self.d_info.d_uuid;

        let schema_entries: Vec<_> = schema_entries
            .into_iter()
            .map(|e| ReplIncrementalEntryV1::new(e.as_ref(), schema, &ranges))
            .collect();

        let meta_entries: Vec<_> = meta_entries
            .into_iter()
            .map(|e| ReplIncrementalEntryV1::new(e.as_ref(), schema, &ranges))
            .collect();

        let entries: Vec<_> = entries
            .into_iter()
            .map(|e| ReplIncrementalEntryV1::new(e.as_ref(), schema, &ranges))
            .collect();

        // Finally, populate the ranges with anchors from the RUV
        let supplier_ruv = self.get_be_txn().get_ruv();
        let ranges = supplier_ruv.get_anchored_ranges(ranges)?;

        // Build the incremental context.
        Ok(ReplIncrementalContext::V1 {
            domain_version,
            domain_patch_level,
            domain_uuid,
            ranges,
            schema_entries,
            meta_entries,
            entries,
        })
    }

    #[instrument(level = "debug", skip_all)]
    pub fn supplier_provide_refresh(&mut self) -> Result<ReplRefreshContext, OperationError> {
        // Get the current schema. We use this for attribute and entry filtering.
        let schema = self.get_schema();

        // A refresh must provide
        //
        // * the current domain version
        let domain_version = self.d_info.d_vers;
        let domain_devel = self.d_info.d_devel_taint;
        let domain_uuid = self.d_info.d_uuid;

        let trim_cid = self.trim_cid().clone();

        // What is the set of data we are providing?
        let ranges = self
            .get_be_txn()
            .get_ruv()
            .filter_ruv_range(&trim_cid)
            .map_err(|e| {
                error!(err = ?e, "Unable to access supplier RUV range");
                e
            })?;

        // * the domain uuid
        // * the set of schema entries
        // * the set of non-schema entries
        // - We must exclude certain entries and attributes!
        //   * schema defines what we exclude!

        let schema_filter_inner = f_or!([
            f_eq(Attribute::Class, EntryClass::AttributeType.into()),
            f_eq(Attribute::Class, EntryClass::ClassType.into()),
        ]);

        let schema_filter = filter!(schema_filter_inner.clone());

        let meta_filter_inner = f_or!([
            f_eq(Attribute::Class, EntryClass::DomainInfo.into()),
            f_eq(Attribute::Class, EntryClass::SystemInfo.into()),
            f_eq(Attribute::Class, EntryClass::SystemConfig.into()),
            f_eq(Attribute::Class, EntryClass::KeyProvider.into()),
        ]);

        let meta_filter = filter!(meta_filter_inner.clone());

        let entry_filter = filter_all!(f_or!([
            f_and!([
                f_pres(Attribute::Class),
                f_andnot(f_or(vec![schema_filter_inner, meta_filter_inner])),
            ]),
            f_eq(Attribute::Class, EntryClass::Tombstone.into()),
            f_eq(Attribute::Class, EntryClass::Recycled.into()),
        ]));

        let schema_entries = self
            .internal_search(schema_filter)
            .map(|ent| {
                ent.into_iter()
                    .map(|e| ReplEntryV1::new(e.as_ref(), schema))
                    .collect()
            })
            .inspect_err(|err| {
                error!(?err, "Failed to access schema entries");
            })?;

        let meta_entries = self
            .internal_search(meta_filter)
            .map(|ent| {
                ent.into_iter()
                    .map(|e| ReplEntryV1::new(e.as_ref(), schema))
                    .collect()
            })
            .inspect_err(|err| {
                error!(?err, "Failed to access meta entries");
            })?;

        let entries = self
            .internal_search(entry_filter)
            .map(|ent| {
                ent.into_iter()
                    .map(|e| ReplEntryV1::new(e.as_ref(), schema))
                    .collect()
            })
            .inspect_err(|err| {
                error!(?err, "Failed to access entries");
            })?;

        // Finally, populate the ranges with anchors from the RUV
        let supplier_ruv = self.get_be_txn().get_ruv();
        let ranges = supplier_ruv.get_anchored_ranges(ranges)?;

        Ok(ReplRefreshContext::V1 {
            domain_version,
            domain_devel,
            domain_uuid,
            ranges,
            schema_entries,
            meta_entries,
            entries,
        })
    }
}