1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
use std::time::Duration;
/// Represents a temporary denial of the credential to authenticate. This is used
/// to ratelimit and prevent bruteforcing of accounts. At an initial failure the
/// SoftLock is created and the count set to 1, with a unlock_at set to 1 second
/// later, and a reset_count_at: at a maximum time window for a cycle.
///
/// If the softlock already exists, and the failure count is 0, then this acts as the
/// creation where the reset_count_at window is then set.
///
/// While current_time < unlock_at, all authentication attempts are denied with a
/// message regarding the account being temporarily unavailable. Once
/// unlock_at < current_time, authentication will be processed again. If a subsequent
/// failure occurs, unlock_at is extended based on policy, and failure_count incremented.
///
/// If unlock_at < current_time, and authentication succeeds the login is allowed
/// and no changes to failure_count or unlock_at are made.
///
/// If reset_count_at < current_time, then failure_count is reset to 0 before processing.
///
/// This allows handling of max_failure_count, so that when that value from policy is
/// exceeded then unlock_at is set to reset_count_at to softlock until the cycle
/// is over (see NIST sp800-63b.). For example, reset_count_at will be 24 hours after
/// the first failed authentication attempt.
///
/// This also works for something like TOTP which allows a 60 second cycle for the
/// reset_count_at and a max number of attempts in that window (say 5). with short
/// delays in between (1 second).
//
// ┌────────────────────────┐
// │reset_at < current_time │
// ─└────────────────────────┘
// │ │
// ▼
// ┌─────┐ .─────. ┌────┐ │
// │Valid│ ╱ ╲ │Fail│
// ┌────┴─────┴───────────────────────(count = 0)─────┴────┴┐ │
// │ `. ,' │
// │ `───' │ │
// │ ┌────────────────────────┐▲ │
// │ │reset_at < current_time │ │ │
// │ └────────────────────────┘│ │
// │ ┌ ─ ─ ─ ─ ─ ─ ─ ─ │ │
// │ │
// │ ├─────┬───────┬──┐ ▼ │
// │ │ │ Fail │ │ .─────.
// │ │ │count++│ │ ,' `. │
// ▼ .─────. └───────┘ │ ; Locked :
// ┌────────────┐ ╱ ╲ └─────────▶: count > 0 ;◀─┤
// │Auth Success│◀─┬─────┬──(Unlocked ) ╲ ╱ │
// └────────────┘ │Valid│ `. ,' `. ,' │
// └─────┘ `───' `───' │
// ▲ │ │
// │ │ │
// └─────┬──────────────────────────┬┴┬───────┴──────────────────┐
// │ expire_at < current_time │ │ current_time < expire_at │
// └──────────────────────────┘ └──────────────────────────┘
//
//
const ONEDAY: u64 = 86400;
#[derive(Debug, Clone)]
pub enum CredSoftLockPolicy {
Password,
Totp(u64),
Webauthn,
Unrestricted,
}
impl CredSoftLockPolicy {
/// Determine the next lock state after a failure based on this credentials
/// policy.
fn failure_next_state(&self, count: usize, ct: Duration) -> LockState {
match self {
CredSoftLockPolicy::Password => {
let next_day_end = ct.as_secs() + ONEDAY;
let rem = next_day_end % ONEDAY;
let reset_at = Duration::from_secs(next_day_end - rem);
if count < 3 {
LockState::Locked(count, reset_at, ct + Duration::from_secs(1))
} else if count < 9 {
LockState::Locked(count, reset_at, ct + Duration::from_secs(3))
} else if count < 25 {
LockState::Locked(count, reset_at, ct + Duration::from_secs(5))
} else if count < 100 {
LockState::Locked(count, reset_at, ct + Duration::from_secs(10))
} else {
LockState::Locked(count, reset_at, reset_at)
}
}
CredSoftLockPolicy::Totp(step) => {
// reset at is based on the next step ending.
let next_window_end = ct.as_secs() + step;
let rem = next_window_end % step;
let reset_at = Duration::from_secs(next_window_end - rem);
// We delay for 1 second, unless count is > 3, then we set
// unlock at to reset_at.
if count >= 3 {
LockState::Locked(count, reset_at, reset_at)
} else {
LockState::Locked(count, reset_at, ct + Duration::from_secs(1))
}
}
CredSoftLockPolicy::Webauthn => {
// we only lock for 1 second to slow them down.
// TODO: Could this be a DOS/Abuse vector?
LockState::Locked(
count,
ct + Duration::from_secs(1),
ct + Duration::from_secs(1),
)
}
CredSoftLockPolicy::Unrestricted => {
// No action needed
LockState::Init
}
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum LockState {
Init,
// count
// * Number of Failures in this cycle
// unlock_at
// * Time of next allowed check (works with delay)
// reset_count_at
// * The time to reset the state to init.
// count reset_at unlock_at
Locked(usize, Duration, Duration),
Unlocked(usize, Duration),
}
#[derive(Debug, Clone)]
pub(crate) struct CredSoftLock {
state: LockState,
// Policy (for determining delay times based on num failures, and when to reset?)
policy: CredSoftLockPolicy,
}
impl CredSoftLock {
pub fn new(policy: CredSoftLockPolicy) -> Self {
CredSoftLock {
state: LockState::Init,
policy,
}
}
pub fn apply_time_step(&mut self, ct: Duration) {
// Do a reset if needed?
let mut next_state = match self.state {
LockState::Init => LockState::Init,
LockState::Locked(count, reset_at, unlock_at) => {
if ct > reset_at {
LockState::Init
} else if ct > unlock_at {
LockState::Unlocked(count, reset_at)
} else {
LockState::Locked(count, reset_at, unlock_at)
}
}
LockState::Unlocked(count, reset_at) => {
if ct > reset_at {
LockState::Init
} else {
LockState::Unlocked(count, reset_at)
}
}
};
std::mem::swap(&mut self.state, &mut next_state);
}
/// Is this credential valid to proceed at this point in time.
pub fn is_valid(&self) -> bool {
!matches!(self.state, LockState::Locked(_count, _reset_at, _unlock_at))
}
/// Document a failure of authentication at this time.
pub fn record_failure(&mut self, ct: Duration) {
let mut next_state = match self.state {
LockState::Init => {
self.policy.failure_next_state(1, ct)
// LockState::Locked(1, reset_at, unlock_at)
}
LockState::Locked(count, _reset_at, _unlock_at) => {
// We should never reach this but just in case ...
self.policy.failure_next_state(count + 1, ct)
// LockState::Locked(count + 1, reset_at, unlock_at)
}
LockState::Unlocked(count, _reset_at) => {
self.policy.failure_next_state(count + 1, ct)
// LockState::Locked(count + 1, reset_at, unlock_at)
}
};
std::mem::swap(&mut self.state, &mut next_state);
}
#[cfg(test)]
pub fn is_state_init(&self) -> bool {
matches!(self.state, LockState::Init)
}
#[cfg(test)]
fn peek_state(&self) -> &LockState {
&self.state
}
/*
#[cfg(test)]
fn set_failure_count(&mut self, count: usize) {
let mut next_state = match self.state {
LockState::Init => panic!(),
LockState::Locked(_count, reset_at, unlock_at) => {
LockState::Locked(count, reset_at, unlock_at)
}
LockState::Unlocked(count, reset_at) => {
LockState::Unlocked(count, reset_at)
}
};
std::mem::swap(&mut self.state, &mut next_state);
}
*/
}
#[cfg(test)]
mod tests {
use crate::credential::softlock::*;
use crate::credential::totp::TOTP_DEFAULT_STEP;
#[test]
fn test_credential_softlock_statemachine() {
// Check that given the set of inputs, correct decisions about
// locking are made, and the states can be moved through.
// ==> Check the init state.
let mut slock = CredSoftLock::new(CredSoftLockPolicy::Password);
assert!(slock.is_state_init());
assert!(slock.is_valid());
// A success does nothing, so we don't track them.
let ct = Duration::from_secs(10);
// Generate a failure
// ==> trans to locked
slock.record_failure(ct);
assert!(
slock.peek_state()
== &LockState::Locked(1, Duration::from_secs(ONEDAY), Duration::from_secs(10 + 1))
);
// It will now fail
// ==> trans ct < exp_at
slock.apply_time_step(ct);
assert!(!slock.is_valid());
// A few seconds later it will be okay.
// ==> trans ct < exp_at
let ct2 = ct + Duration::from_secs(2);
slock.apply_time_step(ct2);
assert!(slock.is_valid());
// Now trigger a failure now, we move back to locked.
// ==> trans fail unlock -> lock
slock.record_failure(ct2);
assert!(
slock.peek_state()
== &LockState::Locked(2, Duration::from_secs(ONEDAY), Duration::from_secs(10 + 3))
);
assert!(!slock.is_valid());
// Now check the reset_at behaviour. We need to check a locked and unlocked state.
let mut slock2 = slock.clone();
// This triggers the reset at from locked.
// ==> trans locked -> init
let ct3 = ct + Duration::from_secs(ONEDAY + 2);
slock.apply_time_step(ct3);
assert!(slock.is_state_init());
assert!(slock.is_valid());
// For slock2, we move to unlocked:
// ==> trans unlocked -> init
let ct4 = ct2 + Duration::from_secs(2);
slock2.apply_time_step(ct4);
eprintln!("{:?}", slock2.peek_state());
assert_eq!(
slock2.peek_state(),
&LockState::Unlocked(2, Duration::from_secs(ONEDAY))
);
slock2.apply_time_step(ct3);
assert!(slock2.is_state_init());
assert!(slock2.is_valid());
}
#[test]
fn test_credential_softlock_policy_password() {
let policy = CredSoftLockPolicy::Password;
assert!(
policy.failure_next_state(1, Duration::from_secs(0))
== LockState::Locked(1, Duration::from_secs(ONEDAY), Duration::from_secs(1))
);
assert!(
policy.failure_next_state(8, Duration::from_secs(0))
== LockState::Locked(8, Duration::from_secs(ONEDAY), Duration::from_secs(3))
);
assert!(
policy.failure_next_state(24, Duration::from_secs(0))
== LockState::Locked(24, Duration::from_secs(ONEDAY), Duration::from_secs(5))
);
assert!(
policy.failure_next_state(99, Duration::from_secs(0))
== LockState::Locked(99, Duration::from_secs(ONEDAY), Duration::from_secs(10))
);
assert!(
policy.failure_next_state(100, Duration::from_secs(0))
== LockState::Locked(
100,
Duration::from_secs(ONEDAY),
Duration::from_secs(ONEDAY)
)
);
}
#[test]
fn test_credential_softlock_policy_totp() {
let policy = CredSoftLockPolicy::Totp(TOTP_DEFAULT_STEP);
assert!(
policy.failure_next_state(1, Duration::from_secs(10))
== LockState::Locked(
1,
Duration::from_secs(TOTP_DEFAULT_STEP),
Duration::from_secs(11)
)
);
assert!(
policy.failure_next_state(2, Duration::from_secs(10))
== LockState::Locked(
2,
Duration::from_secs(TOTP_DEFAULT_STEP),
Duration::from_secs(11)
)
);
assert!(
policy.failure_next_state(3, Duration::from_secs(10))
== LockState::Locked(
3,
Duration::from_secs(TOTP_DEFAULT_STEP),
Duration::from_secs(TOTP_DEFAULT_STEP)
)
);
}
#[test]
fn test_credential_softlock_policy_webauthn() {
let policy = CredSoftLockPolicy::Webauthn;
assert!(
policy.failure_next_state(1, Duration::from_secs(0))
== LockState::Locked(1, Duration::from_secs(1), Duration::from_secs(1))
);
// No matter how many failures, webauthn always only delays by 1 second.
assert!(
policy.failure_next_state(1000, Duration::from_secs(0))
== LockState::Locked(1000, Duration::from_secs(1), Duration::from_secs(1))
);
}
}